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1. Introduction and main results. Let P denote the set of all partitions. If f : P → Q is an
arbitrary function, we define the “q-average” or “q-bracket” of f as the formal power series

〈
f
〉
q
=

∑
λ∈P

f(λ) q|λ|∑
λ∈P

q|λ|
∈ Q[[q]] , (1)

where |λ| denotes the integer of which λ is a partition. If f has at most polynomial growth in |λ|, which
will be the case for all of the functions we consider, then the series in the numerator and denominator
converge for all q ∈ C of absolute value less than 1 and we can consider 〈f〉q as a holomorphic function
in the complex upper half-plane H by setting q = e(τ) := e2πiτ for τ ∈ H. In the language of statistical
physics, one can think of

〈
f
〉
q
as the expectation value of an observable f in a statistical system whose

states are labelled by partitions and where the state λ has energy |λ| and is weighted by q|λ|; then
2πτ/i would correspond to the reciprocal of the temperature multiplied by Boltzmann’s constant, and
the denominator in (1) would be the partition function of the ensemble.

A wonderful result of Bloch and Okounkov [3] states that for a large class of functions f (“shifted
symmetric polynomials”; see §3 for details) the function 〈f〉q is a quasimodular form on the full modular
group. (See §2 for the definition and main properties of quasimodular forms.) That there is a connection
with modular and quasimodular forms is not really surprising, since the denominator in (1) equals
q1/24/η(τ), where η(τ) = q1/24

∏∞
n=1(1 − qn) is the Dedekind eta-function, so that (1) can be written

in the equivalent form
1

η(τ)

〈
f
〉
q
=
∑

λ∈P

f(λ) q|λ|−
1

24 , (2)

and it is well known that the 24th power and the logarithmic derivative of η are modular of weight 12 and
quasimodular of weight 2, respectively. Formula (2), together with the well-known fact that derivatives
of quasimodular forms are quasimodular, already proves that 〈f〉q is quasimodular (of mixed weight)
when f(λ) is a polynomial in |λ|. A less trivial example was discovered by Dijkgraaf [4] in the context
of “mirror symmetry in dimension one,” i.e., the problem of counting (in a suitable sense) generically
ramified coverings of a 2-torus having a given degree n and genus g ≥ 2. The solution of this problem,
which is a special case of the general Hurwitz counting problem, is given in terms of the q-bracket〈
ν2g−2
T

〉
q
, where νT is the function that associates to a partition λ of n the value (constant, by Schur’s

lemma) of the action of the sum of all transpositions in Sn on the irreducible representation of Sn

corresponding to λ. An argument using the language and methods of mathematical physics (see [4] and
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Rudd [8]) indicated that this q-bracket should be a quasimodular form of weight 6g − 6, and a proof of
this fact in mathematical language was given by Kaneko and myself in [6].

The theorem of Bloch and Okounkov is a vast generalization of this special result. For each integer
k ≥ 0 one defines a certain function Qk : P → Q, the first four of these being

Q0(λ) = 1 , Q1(λ) = 0 , Q2(λ) = |λ| − 1
24 , Q3(λ) = νT (λ) (3)

with νT as above. (The definition will be recalled in §3. Our notations differ from those of [3].) We
use the same letter Qk to denote both this function and the corresponding generator of the formal
polynomial algebra

R = Q[Q1, Q2, . . . ]

in infinitely many variables; then any element f = f(Q1, Q2, . . . ) ∈ R can be considered as a function
on partitions by setting f(λ) = f(Q1(λ), Q2(λ), . . . ) and we can speak of its q-bracket 〈f〉q. The result
of Bloch and Okounkov is that this q-bracket is always a quasimodular form on the full modular group,
of the same weight as f if f is homogeneous, where R is graded by assigning to Qk the weight k. The
special cases mentioned above correspond to taking f in the subring of R generated by Q2 and Q3.

Bloch and Okounkov gave two proofs of their theorem, a computational one closely following the
proof in [6] for the special case f = Qm

3 and a more conceptual one leading to an explicit formula
for all q-brackets in terms of determinants of matrices of derivatives of theta functions, but both were
quite difficult. In this paper we will give a very short proof and some extensions of the theorem. Our
main result is the following identity, which leads immediately to a recursive way of computing 〈f〉q as
a quasimodular form for any shifted symmetric polynomial f .

Theorem 1. For any f in the subring Λ∗ = Q[Q2, Q3, . . . ] of R we have the identity
〈
θ(∂∂∂)f

〉
q
= 0 . (4)

Here 〈 〉q :Q[[q]]P → Q[[q]] is defined by linearity, θ(z) ∈ Q[[q]][[z]] is the Jacobi theta series

θ(z) =
∑

ν∈F

(−1)[ν] eνz qν
2/2 (F := Z + 1

2 ) , (5)

and ∂∂∂ : R → R is the derivation defined on generators by ∂∂∂(Qk) = Qk−1, with Q0 = 1.

The proof, which will be given in §4 after two preliminary sections on quasimodular forms and on
invariants on partitions, is extremely easy, because it turns out that when one uses the definitions (2)
and (5) to write the left-hand side of (4) as a double sum over the indexing set F×P, then the terms
simply cancel in pairs under a simple (albeit not very obvious) involution on this set!

In §6 we will show how to deduce from Theorem 1 the explicit formula of Bloch and Okounkov for
q-brackets mentioned above. The next two sections contain the proofs of the two following theorems
giving properties of the q-bracket of an arbitrary element f ∈ R as a polynomial in the Eisenstein
series E2 with coefficients in the ring of modular forms: the first describes the leading term of this
polynomial, and the second gives its derivative with respect to E2.

Theorem 2. For any k ≥ 0 and any f ∈ R2k we have

〈
f
〉
q
= −

(2k − 3)!!

(−12)k
µ(f)Ek

2 + (combination of lower powers of E2) , (6)

where µ : R → Q is the ring homomorphism defined by µ(Qn) = (1−n)/n! and where (2k−3)!! denotes
the “double factorial” 1× 3× · · · × (2k − 3) (with (−1)!! = 1 and (−3)!! = −1).
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Theorem 3. Let d be the derivation on quasimodular forms sending modular forms to zero and E2 to 12.
Then

d
〈
f
〉
q
=
〈
1
2

(
D − ∂∂∂2

)
f
〉
q

(7)

for all f ∈ R, where ∂∂∂ is as in Theorem 1 and D : R → R is the second order differential operator of

degree −2 defined by

D =
∑

k, ℓ≥ 0

(
k + ℓ

k

)
Qk+ℓ

∂2

∂Qk+1 ∂Qℓ+1
. (8)

We use this result to define an sl2-action on R in such a way as to make the q-bracket map equivariant
(Theorem 6). Finally, in §9 we will show that, rather surprisingly, the space of functions on P whose
q-brackets are quasimodular is much larger than the ringR and contains many other interesting elements,
and also (again somewhat unexpectedly) that this larger space is not closed under multiplication.

2. Quasimodular forms. We denote by M∗ =
⊕

Mk and M̃∗ =
⊕

M̃k the rings of modular and
quasimodular forms, respectively, on the full modular group Γ = SL(2,Z) with rational Fourier coeffi-
cients. We recall that an element of Mk is a holomorphic function φ on the complex upper half-plane H

satisfying φ|kγ = φ for all γ ∈ Γ and having a Fourier expansion φ(τ) =
∑∞

n=0 anq
n with coefficients

an ∈ Q of polynomial growth, where φ|kγ : H → C for γ =
(
a b

c d

)
∈ Γ is the function sending τ ∈ H

to (cτ + d)−kφ
(
aτ+b
cτ+d

)
and where q = e(τ) := e2πiτ , while a function φ ∈ M̃k is a holomorphic function

given by a Fourier expansion with the same growth condition but satisfying the weaker transformation
property that γ 7→ φ|kγ(τ) is a polynomial in c

cτ+d for τ ∈ H fixed and γ =
(
a b

c d

)
∈ Γ variable. (This

is not the definition given in [6], but an equivalent one suggested by Werner Nahm. For more details,
see §5.3 of [9].) The simplest example is the Eisenstein series

Gk(τ) = −
Bk

2k
+

∞∑

n=1

nk−1 qn

1 − qn
(k > 0 even, Bk = kth Bernoulli number), (9)

which is a modular form of weight k if k > 2 and a quasimodular form of weight 2 if k = 2. Both M∗

and M̃∗ are rings and it is well-known that

M∗ = Q[Q,R] , M̃∗ = M∗[P ] = Q[P, Q,R] , (10)

where P , Q and R (Ramanujan’s notations for E2, E4, E6) are the normalized Eisenstein series

P = −24G2 = 1− 24q − · · · , Q = 240G4 = 1 + 240q + · · · , R = −504G6 = 1− 504q − · · · .

For example, we have G8 =
Q2

480
, G10 = −

QR

264
and G12 =

441Q3 + 250R2

65520
.

A basic fact is that the ring M̃∗ is closed under the differentiation operator

D =
1

2πi

d

dτ
= q

d

dq
,

as can be seen either from the definition or from (10) together with Ramanujan’s formulas

D(P ) =
P 2 −Q

12
, D(Q) =

PQ−R

3
, D(R) =

PR−Q2

2
. (11)
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The operator D acts on M̃∗ as a derivation of degree +2 (i.e., it raises the weight of a quasimodular

form by 2). There are two further derivations W and d on M̃∗ of degree 0 and −2, respectively, defined

by W (φ) = kφ for φ ∈ M̃k (weight operator or Hamiltonian) and by d(φ) = 12F ′(P ) if φ ∈ M̃∗ has been
written using (10) as F (P ) where F is a polynomial with coefficients in M∗ . These three operators
satisfy the commutation relations

[W,D] = 2D , [W, d] = −2d , [d, D] = W , (12)

i.e., they span a 3-dimensional Lie algebra of derivations isomorphic to sl2 .

As well as the Eisenstein series, we will need another sequence of quasimodular forms {Hn}n≥0,
where Hn has weight n (and hence is zero if n is odd). They can be defined inductively by

H0 = 1 , H1 = 0 , 4n(n+ 1)Hn = 8D(Hn−2) + PHn−2 if n > 1 (13)

(or in closed form H2r = 1
(2r+1)! (2D + 1

4P )r(1) ), the first few non-zero values being

H0 = 1 , H2 =
P

24
, H4 =

5P 2 − 2Q

5760
, H6 =

35P 3 − 42PQ+ 16R

2903040
.

A more natural definition of these forms is by the Taylor expansion

θ(z)

θ′(0)
=

∞∑

n=0

Hn(τ) z
n+1 , (14)

where θ(z) = θ(z; τ) is the Jacobi theta series defined by (5). To see the equivalence of these two
definitions, note that if we define Hn by (14) then from (5) we get

(2r + 1)! θ′(0)H2r =
∑

ν∈F

(−1)[ν] ν2r+1 qν
2/2 = (2D)rθ′(0) , (15)

and (13) then follows from Jacobi’s formula θ′(0) = η3 (here η(τ) is the Dedekind eta-function as in §1,
with η24 = (Q3 − R2)/1728 ) together with the differentiation formula D(η) = 1

24Pη . Yet a third way
to compute the functions Hn is by using the formula

z
θ′(z)

θ(z)
= 1 − 2

∑

k>0

Gk
zk

k!
(16)

(which follows from the Jacobi triple product) to get the identity nHn = −2
∑

0<k≤n GkHn−k/k! for

all n, which together with the same initial conditions as in (13) determines all of the Hn recursively
in terms of the Eisenstein series Gk. From formula (16) and the modularity of Gk for k > 2 we

see easily that
∑

Hnz
n = ePz2/24

∑
hnz

n or Hn =
∑n

r=0 hn−2r (P/24)
r/r! where the hn (h0 = 1,

h2 = 0, h4 = −Q/2880, h6 = R/181440, . . . ) are now modular rather than quasimodular forms, given
recursively by

(
n+3
2

)
hn+2 = (D − n

12P )hn − 1
288Qhn−2 .

3. Partitions and shifted symmetric polynomials. As in the introduction, we denote by P the
set of all partitions. Each partition is represented as λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ · · · and λj = 0
for all but finitely many j, or equivalently by a Young diagram Yλ whose jth row consists of λj boxes,
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with total size |λ| =
∑

j≥1 λj . Following Bloch and Okounkov (though with different notations), for all

λ ∈ P we will now define invariants Pk(λ) ∈ Z[ 12 ] and Qk(λ) ∈ Q (k ≥ 0), related by

Q0(λ) = 1 , Qk(λ) =
Pk−1(λ)

(k − 1)!
+ βk if k ≥ 1 , (17)

where β0 = 1, β1 = 0, β2 = − 1
24 , . . . are defined by the power series expansion

z/2

sinh(z/2)
=

∞∑

n=0

βnz
n . (18)

The numbers Pk(λ) are most conveniently defined in terms of the Frobenius coordinates of λ. These
are the numbers (r; a1, . . . , ar; b1, . . . , br) where r is the length of the longest principal diagonal contained
in the Young diagram of λ (or, in more modern bibliometric terms, the h-index of a researcher whose
jth most cited paper has λj citations) and the numbers a1 > · · · > ar ≥ 0 and b1 > · · · > br ≥ 0 are
the arm- and leg-lengths (=number of cells to the right of, resp. below) of the cells on this diagonal (see

Partition λ = (5, 5, 4, 1)

Frobenius coordinates (3; 4,3,1; 3,1,0)

Cλ = {− 7
2 , −

3
2 , −

1
2 ,

3
2 ,

7
2 ,

9
2}

(P0, P1, P2, . . . ) = (0, 15, 20, 735
4 , 410, 46575

16 , . . . )

diagram). This gives us the “balanced fermionic set”

Cλ :=
{
−b1 −

1
2 , . . . ,−br −

1
2 , ar +

1
2 , . . . , a1 +

1
2

}
⊂ F ,

where F = Z+ 1
2 (“fermions”) as in (5). We then define the invariants Pk(λ) (k ≥ 0) by

Pk(λ) =
∑

c∈Cλ

sgn(c) ck =
r∑

i=1

[
(ai +

1
2 )

k − (−bi −
1
2 )

k
]
, (19)

the first two cases being

P0(λ) =
∑

c∈Cλ

sgn(c) = 0 , P1(λ) =
∑

c∈Cλ

|c| =
r∑

i=1

(ai + bi + 1) = |λ| . (20)

To define the invariants Qk(λ) we associate to λ ∈ P the set Xλ = {λj − j + 1
2 | j ≥ 1} ⊂ F. It is

easily checked that the sets Xλ and Cλ are related by

F+ ∩Xλ = C+
λ = {ar +

1
2 , . . . , a1 +

1
2} , F− rXλ = C−

λ = {−b1 −
1
2 , . . . ,−br −

1
2} (21)

and that the map λ 7→ Xλ gives a bijection between P and X
0
F , where XF denotes the set of all subsets

X ⊂ F that are bounded above and whose complements are bounded below, and X
0
F ⊂ XF the subset

of those X for which the finite sets F+ ∩X and F− rX have the same cardinality. To any set X ∈ XF

we associate the formal generating series

wX(T ) =
∑

x∈X

T x ∈ T 1/2 Z[T, T−1]] . (22)
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This series clearly converges for T > 1 and belongs to T 1/2

T−1 + T 1/2 Z[T−1, T ], so that it defines a

meromorphic function WX(z) and a sequence of coefficients {Qk(X)}k≥0 by

WX(z) := wX(ez) (z ∈ Cr 2πiZ) , WX(z) =:

∞∑

k=0

Qk(X) zk−1 (0 < |z| < 2π) . (23)

Thus Q0(X) is always equal to 1 and Q1(X) = |F+ ∩X| − |F− rX| is an integer that vanishes if and
only if X ∈ X

0
F . For λ ∈ P we define Qk(λ) = Qk(Xλ) and Wλ(z) = WXλ

(z) =
∑

k≥0 Qk(λ)z
k−1, and

observe that the relation (21) immediately implies the relation (17), since T 1/2

T−1 = z/2
sinh(z/2) for T = ez.

In the example λ = (5, 5, 4, 1, 0, 0, . . . ) illustrated above, we find:

Xλ = { 9
2 ,

7
2 ,

3
2 , −

5
2 , −

9
2 , −

11
2 , . . . } ,

Wλ(z) = e9z/2 + e7z/2 + e3z/2 + e−5z/2 + e−9z/2
(
1 − e−z

)−1
,

= z−1 + 359
24 z + 10 z2 + 176407

5760 z3 + 205
12 z4 + 23473769

967680 z5 + · · ·

= 1/2
sinh z/2 + 15 z + 10 z2 + 245

8 z3 + 205
12 z4 + 3105

128 z5 + · · · ,

and we recover the values of Pk(λ) given before.

To any element f ∈ R = Q[Q1, Q2, . . . ] we associate functions (which we denote by the same letter)
f : XF → Q and f : P → Q by

f(X) = f(Q1(X), Q2(X), . . . ) , f(λ) = f(Xλ) = f(Q1(λ), Q2(λ), . . . )

(these functions are called shifted symmetric polynomials) and hence also a q-bracket 〈f〉q as in (1).
We have a similarly defined map f : XZ → Q, where XZ is defined exactly like XF but with F = Z+ 1

2
replaced by Z (so elements of XZ are subsets of Z that are bounded above and cobounded below). The
following simple result will be the key to our proof of the Bloch-Okounkov theorem.

Proposition 1. The map (ν, λ) 7→ X = Xλ + ν defines a bijection F × P ≈ XZ, with the invariants

of X and λ related by Q1(X) = ν, Q2(X) = |λ| − 1
24 + ν2

2 , and more generally

f(X) = (eν∂∂∂f)(λ) for all f ∈ R , (24)

where ∂∂∂ : R → R is the derivation of degree −1 defined in Theorem 1.

Proof. Translating an element X ∈ XF ∪XZ by ν ∈ F clearly multiplies wX(T ) by T ν , so the invariants
of X and X + ν are related by

∞∑

k=0

Qk(X + ν) zk−1 = wX+ν

(
ez
)

= eνz wX

(
ez
)

=

∞∑

k=0

(
k∑

j=0

Qk−j(X)
νj

j!

)
zk−1

or Qk(X + ν) = (eν∂∂∂Qk)(X). In particular Q1(X + ν) = Q1(X) + ν, so the map (ν,X) 7→ X + ν gives
a bijection F×X

0
F ≈ XZ (and hence also F×P ≈ XZ), with inverse X 7→ (Q1(X), X −Q1(X)). This

proves the first statement of the proposition and also the second for f = Qk, and this is enough since
f 7→ eν∂∂∂f and f 7→ f(X) are ring homomorphisms and the Qk generate the ring R . �
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4. A recursive formula for the Bloch-Okounkov bracket. In this section we prove Theorem 1
and show how it implies the Bloch-Okounkov theorem.

Proof of Theorem 1. From equations (2) and (5) and Proposition 1 we have

〈
θ(∂∂∂)f

〉
q

η(τ)
=
∑

ν∈F
λ∈P

(−1)[ν] (eν∂∂∂f)(λ) q|λ|−1/24+ν2/2 =
∑

X∈XZ

(−1)[Q1(X)] f(X) qQ2(X)

for any f ∈ R, and this vanishes if f ∈ Λ∗ because the involution XZ → XZ defined by

X 7→ X∗ =

{
X r {0} if 0 ∈ X,

X ∪ {0} if 0 6∈ X,
(25)

changes wX(T ) by ±1 and hence changes Q1(X) by ±1 and leaves Qk(X) unchanged for all k ≥ 2, so
that the terms in the final sum cancel in pairs. �

Corollary (Bloch-Okounkov theorem). The q-bracket 〈f〉q belongs to M̃k for any f ∈ Rk .

Proof. The assertion is obvious for k = 0 (because R0 = Q · 1 and 〈1〉q = 1) and for f ∈ Q1R (because
Q1(λ) = 0 for every partition), and one shows easily using a lexicographic ordering of the monomial
basis that Rk for k > 0 is the sum of ∂∂∂(Λk+1) and Q1Rk−1. Hence we can assume that f = ∂∂∂(f1) for
some f1 ∈ Λk+1. Then applying (4) to f1 and using (14) gives the identity

0 =
∞∑

n=0

Hn(τ)
〈
∂∂∂n(f)

〉
q
=
〈
f
〉
q
+

P

24

〈
∂∂∂2(f)

〉
q
+

5P 2 − 2Q

5760

〈
∂∂∂4(f)

〉
q
+ · · · . (26)

This proves the statement by induction on k since ∂∂∂n(f) has weight k − n < k for n > 0. �

5. Examples and discussion. Before continuing, we digress to make a few remarks concerning various
aspects of Theorem 1 and its proof.

The first comment is that the involution (25) used in the proof of the theorem corresponds under
the bijection XZ ≈ F×P to the bijection on F×P sending (ν, λ) to (ν∗, λ∗), where

{
ν∗ = ν + 1, λ∗ = (λ1 + 1, . . . , λk−1 + 1, λk+1, λk+2, . . . ) if −ν ∈ Xλ ,

ν∗ = ν − 1, λ∗ = (λ1 − 1, . . . , λk−1 − 1, k + ν − 3
2 , λk, λk+1, . . . ) if −ν /∈ Xλ ,

with k ≥ 1 defined by λk − k + 1
2 = −ν in the first case and by λk−1 − (k − 1) + 1

2 > −ν > λk − k + 1
2

(or simply −ν > λ1 −
1
2 if k = 1) in the second. We originally found the above proof in terms of the

complicated map (ν, λ) 7→ (ν∗, λ∗), which was discovered experimentally, but verifying that it is an
involution and that it leaves the quantities |λ| − ν2/2 and more generally (eν∂∂∂Qk)(λ) (k ≥ 2) invariant
requires some work, and the version given here using the bijection of Proposition 1 is much simpler and
more natural.

Secondly, we want to emphasize that the method of proof given here is completely algorithmic: any
shifted symmetric polynomial of positive weight can be written explicitly, though non-uniquely, as the
sum of a multiple of Q1, whose q-bracket is 0, and an element f ∈ ∂∂∂(Λ∗), for which one can compute
the q-bracket as −

∑
n>0 Hn〈∂∂∂

nf〉q by Theorem 1. This is very effective and easy to program. As an
illustration, we have included a small table of q-brackets in an appendix at the end of the paper.
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As an example of how such calculations work, we say a few words about the case of the q-brackets
of powers of Q3 = νT , i.e., the original Dijkgraaf example. Here Theorem 2 says that the expansion of

the quasimodular form An := 〈Q2n
3 〉q ∈ M̃6n begins

An = (−1)n−1 (6n− 3)!!

26n 35n
E3n

2 + · · · ,

which was Theorem 2 of [6], but in fact we can use Theorem 1 to get a complete description of the
functions An via a recursive set of differential equations. To do this, we use that the subring Q[Q2, Q3] of
R is closed under the derivation ∂∂∂ and that multiplying an element of R by Q2 corresponds to applying
D +G2 to its q-bracket (eq. (37) below), getting after a short calculation

n∑

m=0

Ln−m(Am/(2m)!) = 0 (n ≥ 0) ,

where Lr : M̃∗ → M̃∗+6r+2 is the differential operator

Lr =
2r+1∑

s=0

(6r − 2s+ 3)!

62r−s+1(2r − s+ 1)! s!
H6r−2s+2 (D +G2)

s .

Finally, we make a few remarks about the formalism for partitions explained in §3. The set XF

of subsets X of F that are bounded above and whose complements are bounded below is reminiscent
of Dirac’s famous “sea” of negative energy particles, in which the vacuum corresponds to all negative
energy states being occupied and all positive energy ones empty, and electrons and positrons correspond
respectively to filled positive energy states and to “holes” in the sea of negative energy states. This model
works because the electrons are fermionic and obey the Pauli exclusion principle, so the mathematical
version of it is a vector space generated under creation and annihilation operators from a vacuum state
· · ·∧e−5/2∧e−3/2∧e−1/2 and in which each element X ∈ XF corresponds to the infinite wedge

∧
x∈X ex.

In fact, this corresponds to the point of view taken by Bloch and Okounkov, whose paper contains the
words “infinite wedge representation” in its title and uses several notions coming from conformal field
theory and other parts of mathematical physics. The definitions and arguments given in Sections 3
and 4 here are elementary and do not need any of these concepts, but they seemed worth mentioning.
In the same vein, the interaction between subsets of F and Z that played a key role in the proof above
may perhaps be viewed as a kind of very naive form of supersymmetry.

6. Comparison with the Bloch-Okounkov formula for q-brackets. Since the Qk generate the
ring R, knowing 〈f〉q for all f ∈ R is equivalent to knowing the generating function

Fn(z1, . . . , zn) :=
〈
W (z1) · · ·W (zn)

〉
q
=

∑

k1,...,kn≥0

〈Qk1
· · ·Qkn〉q z

k1−1
1 . . . zkn−1

n (27)

(a Laurent series in n variables) for all n ≥ 0. Here “W (zi)” is the function λ 7→ Wλ(zi) from partitions
to Laurent series in zi, where Wλ(z) =

∑∞
k=0 Qk(λ)z

k−1 as in §3. Bloch and Okounkov give the value of
the generating function (27) as the full symmetrization

∑
π∈Sn

Vn(zπ(1), · · · , zπ(n)) of a simpler function

Vn(z1, . . . , zn) that is defined as the quotient of a certain determinant of derivatives of θ(z), evaluated
at subsums z = z1 + · · · + zm (0 ≤ m ≤ n), by the product

∏n
m=1 θ(z1 + · · · + zm). Essentially by

applying Cramer’s rule, they rewrite this formula for Vn as the recursion

n∑

m=0

(−1)n−m

(n−m)!
θ(n−m)(z1 + · · ·+ zm)Vm(z1, . . . , zm) = 0 for all n ≥ 1 (28)
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(p. 30 of [3], with a sign corrected) with the initial condition V0( ) = 1, the first three cases being

V1(z) =
θ′(0)

θ(z)
, V2(z1, z2) =

θ′(z1)V1(z1)

θ(z1 + z2)
=

θ′(0)

θ(z1 + z2)

θ′(z1)

θ(z1)
, (29)

V3(z1, z2, z3) =
θ′(z1 + z2)V2(z1, z2)−

1
2θ

′′(z1)V1(z1) +
1
6θ

′′′(0)

θ(z1 + z2 + z3)

=
θ′(0)

θ(z1 + z2 + z3)

(θ′(z1)
θ(z1)

θ′(z1 + z2)

θ(z1 + z2)
−

1

2

θ′′(z1)

θ(z1)
+

E2

24

)
. (30)

Symmetrizing the recursion (28) with respect to the n variables z1, . . . , zn, and observing that there
are (n − |I|)! numberings of the elements of the complement of a subset I of {1, . . . , n}, we obtain the
following equivalent formulation of Bloch and Okounkov’s formula for the generating function Fn.

Theorem 4. The functions Fn(z1, . . . , zn) are determined recursively by the equations

∑

I⊆{1,...,n}

(−1)n−|I| θ(n−|I|)
(∑

i∈I zi
)
F|I|

({
zi}i∈I

)
= 0 (n ≥ 1) , (31)

together with the initial condition F0( ) = 1.

We will show in a moment that the recursion (31) is equivalent to Theorem 1 (which was in fact
discovered in this way, with the easy direct proof noticed only afterwards). But we show first that
we can also rewrite this recursion in the form of the following simple recursive axiomatic definition of
the Laurent series Fn, where in the final axiom we have used the notation [G]+ to denote the strictly-
positive-exponent part of a Laurent series G in several variables.

Theorem 5. The functions Fn(z1, . . . , zn) (n ≥ 0) are the unique Laurent series satisfying:

(i) F0( ) = 1 .
(ii) Fn(z1, . . . , zn) is symmetric in all n arguments.

(iii) Fn(z1, . . . , zn) =
1

zn
Fn−1(z1, . . . , zn−1) + O(zn) as zn → 0.

(iv)
[
θ(z1 + · · ·+ zn)Fn(z1, . . . , zn)

]+
= 0 for all n ≥ 0.

Proof. That the Fn satisfy (i) and (ii) is clear from the definitions, and so is (iii) if we remember that
Q1 = 0 on P. Property (iv) is immediate from (27) since none of the terms with I ( {1, . . . , n} contain
all n variables. For the uniqueness, we proceed by induction. Suppose that F ∗

n is another solution and
that F ∗

n′ = Fn′ for n′ < n. Then F ∗
n = Fn +Gn where Gn(z1, . . . , zn) is O(z1 · · · zn) by (ii) and (iii), so

0 = [θ(z1 + · · ·+ zn)Gn(z1, . . . , zn)]
+ = θ(z1 + · · ·+ zn)Gn(z1, . . . , zn). �

Equivalence of Theorem 4 and Theorem 1. The truth of equation (4) for all f ∈ Λ∗ = Q[Q2, Q3, . . . ] is
equivalent to its truth for the generating function

f =
∑

k1,...,kn≥0
k1,...,kn 6=1

Qk1
· · ·Qkn zk1−1

1 · · · zkn−1
n =

n∏

i=1

(
W (zi) − Q1

)

for all n ≥ 0, where z1, . . . , zn are formal variables. For this f we have

〈
et∂∂∂f

〉
q
=
〈 n∏

i=1

(
etziW (zi) − t

)〉
q
=

∑

I⊆{1,...,n}

(−t)n−|I| etzI F|I|

({
zi}i∈I

)
,
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where zI denotes
∑

i∈I zi. This in turn implies that

〈
h(∂∂∂)f

〉
q
=

∑

I⊆{1,...,n}

(−1)n−|I| h(n−|I|)(zI)F|I|

({
zi}i∈I

)

for any power series h(z). Taking h = θ, we obtain the equivalence of (4) and (31). �

7. The leading coefficient of the q-bracket. In this section and the next one we will prove Theo-
rems 2 and 3 as stated in the Introduction. The second of these implies the first, but we nevertheless
prefer to prove each theorem separately. We make the preliminary remark that the extension of the
“double factorial” n!! := n× (n− 2)× · · · 3× 1 (n ≥ 1 odd) to (−1)!! = 1 and (−3)!! = −1 as given in
Theorem 2 is the natural definition, forced by the functional equation n!! = n (n − 2)!! . These values
only play a role in Theorem 2 in the cases k = 0 and k = 1, where we know the theorem anyway, since
〈1〉q = 1 and 〈Q2〉q = 1

24P , but the consistency of the definition of the double factorial is important for
the proof, which uses an induction over the weight.

We first restate Theorem 2 in a more convenient form. Let T : M̃∗ → Q (“top term”) be the map
defined by φ = T (φ) (−E2/12)

k + (lower-degree terms in E2) if φ is a quasimodular form of weight 2k.
Equivalently, T can be defined as the ring homomorphism from Q[P,Q,R] to Q sending P = E2 to −12
and Q and R to 0. Then Theorem 2 can be rewritten as the identity

T
(〈
f
〉
q

)
= − (2k − 3)!!µ(f) (∀ k ≥ 0, f ∈ R2k) . (32)

To prove it we will need two lemmas, which we now state. The first is a simple identity.

Lemma 1. For any integers k and r with 0 ≤ r ≤ k we have

(−1)r−1(2k − 2r − 3)!!

2r r!
=

2k+1k!

(2r + 1)!
Res t=−1

(
t2r+2 dt

(1 − t2)k+1

)
. (33)

Proof. This formula, which can be written as a binomial coefficient identity by setting t = −1 + ǫ and
expanding the (1 − ǫ)2r+2 and (1 − ǫ/2)−k−1 by the binomial theorem, can be proved in several ways.
We indicate two of these briefly, leaving the easy details to the reader. The most direct way is to use
gamma function identities, Euler’s beta integral and Cauchy’s residue theorem to write

(2k − 2r − 3)!!

2r r!

(2r + 1)!

2k+1k!
=

Γ(k − r − 1
2 )Γ(r +

3
2 )

2π Γ(k + 1)

=
1

2π

∫ ∞

−∞

u2r+2 du

(1 + u2)k+1
= iResu=i

(
u2r+2 du

(1 + u2)k+1

)
,

as desired (set u = −it). However, this works only if 0 ≤ r ≤ k − 1, since the integral diverges
when r = k. The second approach is to note that, if we denote the residue occurring in (33) by R(r, k),
then we have the two Pascal-triangle-like identities R(r, k) − R(r + 1, k) = R(r, k − 1) (obvious) and
(2r+1)R(r−1, k−1)+2kR(r, k) = 0 (integration by parts), and using these one can reduce the general
case to the case (k, r) = (0, 0) by induction over r and k. �

Lemma 2. For any f1 ∈ Λ2k+1 the polynomial µ
(
et∂∂∂f1

)
∈ Q[t] is divisible by (t+ 1)k+1 .

Proof. From the generating function

∞∑

n=0

µ
(
et∂∂∂Qn

)
zn−1 = µ

(
et∂∂∂W (z)

)
= µ

(
etzW (z)

)
= etz

∞∑

n=0

1− n

n!
zn−1 =

1− z

z
e(t+1)z
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we get the closed formula

µ
(
et∂∂∂Qn

)
=

(t+ 1)n − n (t+ 1)n−1

n!
(n ≥ 0) .

This is divisible by (t+ 1)n−1 for all n ≥ 1 and hence by (t+ 1)n/2 for all n ≥ 2. Since both et∂∂∂ and µ
are ring homomorphisms, it follows that µ

(
et∂∂∂f

)
is divisible by (1 + t)h/2 for all f ∈ Λh. The lemma is

just the case h = 2k + 1 of this assertion. �

Proof of Theorem 2. As in our derivation of the Bloch-Okounkov theorem from Theorem 1, we use the
fact that the ring R is the sum (not direct) of the three subspaces Q · 1, Q1 R, and ∂∂∂(Λ∗), so that it
suffices to prove equation (32) for f belonging to any one of these three spaces. For the first two, it
is obvious: if f = 1 we use 〈1〉q = 1, µ(1) = 1 and (−3)!! = −1, and if f is divisible by Q1 then the
expression on the left is zero because f vanishes on all partitions and the expression on the right because
µ(Q1) = 0 and µ is a ring homomorphism. If f = ∂∂∂(f1) with f1 ∈ Λ2k+1, then we have equation (26).
Applying the ring homomorphism T to it, and using that T (H2r) = (−1/2)r/r! (which follows easily by
recursion from (13), and even more easily from the remark at the end of §2, which shows directly that

T
(∑

Hnz
n
)
= e−z2/2), we find

0 = T

(
∞∑

r=0

H2r

〈
∂∂∂2r(f)

〉
q

)
?
=

∞∑

r=0

(−1)r (2k − 2r − 3)!!

2r r!
µ
(
∂∂∂2r+1(f1)

)
, (34)

where in the second line we have optimistically used (32) to rewrite each term T (〈 · 〉q) in terms of µ.
But now we see that it suffices to prove the vanishing of the expression on the right, since the equality

indicated by “
?
=” is true by induction on the weight for all terms with r > 0 and the r = 0 term is

precisely the identity we are trying to prove. And indeed, from Lemmas 1 and 2 we obtain

Right-hand side of (34) = − 2k+1k! Res t=−1

(
t µ
(
et∂∂∂f1

)
dt

(1 − t2)k+1

)
= 0 . �

8. Relation of the q-bracket to the sl2-action on quasimodular forms. We now turn to Theo-
rem 3, which we restate as

d
〈
f
〉
q
=
〈
Df
〉
q

for all f ∈ R (35)

with D = 1
2

(
D − ∂∂∂2

)
, where ∂∂∂ =

∑∞
m=0 Qm ∂/∂Qm+1 as in Theorem 1 and D is the second order

differential operator defined in (8). For the proof we need some properties of these operators.

Lemma 3. The differential operators D, ∂∂∂, D = 1
2 (D − ∂∂∂2) and E =

∑∞
m=1 mQm ∂/∂Qm (Euler

operator on R, acting on Rk as multiplication by k) satisfy the relations

(a) D(Q1R) ⊆ Q1R .

(b) D and ∂∂∂ commute.

(c) D(Λ∗) ⊆ Λ∗ .

(d) Im (D + 1
2 E(E − 3)) ⊂ Ker(µ) (µ : R → Q as in Theorem 2) .

(e) [D, Q2] = E − Q1∂∂∂ − 1
2 .

Proof. (a) From the definition of D we have

2D =
∑

k, ℓ≥ 0

((
k + ℓ

k

)
Qk+ℓ − QkQℓ

)
∂2

∂Qk+1 ∂Qℓ+1
−

∑

k≥ 0

Qk
∂

∂Qk+2
(36)

11



But the first sum can be replaced by one over k, ℓ ≥ 1, since the terms with kℓ = 0 vanish. The resulting
expression for D contains no derivatives with respect to Q1 and hence is Q[Q1]-linear.

(b) It suffices to prove that D and ∂∂∂ commute. We have

[
Qm

∂

∂Qm+1
, Qk+ℓ

∂2

∂Qk+1 ∂Qℓ+1

]
= δm,k+ℓ−1 Qk+ℓ−1

∂2

∂Qk+1 ∂Qℓ+1

− δm,k+1 Qk+ℓ
∂2

∂Qk+2 ∂Qℓ+1
− δm,ℓ+1 Qk+ℓ

∂2

∂Qk+1 ∂Qℓ+2

and hence, summing over all k, ℓ, m ≥ 0,

[
∂∂∂ ,D

]
=

∑

k,ℓ≥0

((
k + ℓ

k

)
−

(
k + ℓ− 1

k

)
−

(
k + ℓ− 1

ℓ

))
Qk+ℓ−1

∂2

∂Qk+1 ∂Qℓ+1
= 0 .

(c) This is obvious from the definition (8), since the terms with k = 0 or ℓ = 0 vanish when applied
to an element of Λ∗ and the factor Qk+ℓ belongs to Λ∗ if k and ℓ are both strictly positive.

(d) We have

2D + E(E − 3) =
∑

k, ℓ≥ 1

[(
k + ℓ− 2

k − 1

)
Qk+ℓ−2 − Qk−1Qℓ−1 + kℓQkQℓ

]
∂2

∂Qk∂Qℓ

+
∑

k≥1

[
−Qk−2 + k(k − 3)Qk

] ∂

∂Qk
.

The images under µ of the two expressions in square brackets are given respectively by:

(3− k − ℓ)− (2− k)(2− ℓ) + (1− k)(1− ℓ)

(k − 1)! (ℓ− 1)!
= 0 ,

−(k − 1)(3− k) + (k − 3)(1− k)

(k − 1)!
= 0 ,

and since µ is a homomorphism, this shows that µ
(
(D + 1

2E(E − 3))f
)
= 0 for all f ∈ R.

(e) Multiplying out (36) we find

D =
(Q2

1

2
− Q2

) ∂2

∂Q2
2

+
(
E − Q1 ∂∂∂ −

1

2

) ∂

∂Q2
+ · · · ,

where “· · · ” denotes terms that contain no Q2-derivatives and hence commute with multiplication by Q2.
The assertion follows from this and the relations [E,Q2] = 2Q2 and [∂∂∂,Q2] = Q1 . �

Proof of Theorem 3. We use for the third time the same principle as in the proofs of Theorem 2 and
of the Bloch-Okounkov theorem, namely, that it is enough to prove (35) for the three cases f = 1,
f ∈ Q1R, and f ∈ ∂∂∂(Λ∗). The first case is trivial, and the second follows from part (a) of Lemma 3,
which implies that both sides of the equation vanish in this case, so we can assume that f = ∂∂∂(f1) with
f1 ∈ Λ∗. Then as before equation (26) holds, and if we apply d to both sides of this equation, using
that d is a derivation and that it sends Hn to 1

2Hn−2 for all n ≥ 0 (which is an easy consequence of the
inductive definition (13) or of the final remark in §2), we find

0 = d

(
∞∑

r=0

H2r

〈
∂∂∂2rf

〉
q

)
?
=

∞∑

r=0

H2r

(
〈D
(
∂∂∂2rf

)
〉q +

1

2
〈∂∂∂2r+2f〉q

)
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and, just as in the proof of Theorem 2, that by induction on the weight it suffices to prove the vanishing
of the expression on the right in this formula. But by part (b) of Lemma 3 we have 2D

(
∂∂∂2rf

)
+∂∂∂2r+2f =

D
(
∂∂∂2r+1f1

)
= ∂∂∂2r+1(Df1), and sinceDf1 belongs to Λ∗ by part (c) of the lemma, the required vanishing

is an immediate consequence of Theorem 1. �

Note that in this proof we used only parts (a), (b) and (c) of Lemma 3. We use property (d) to
prove the already-mentioned fact that Theorem 3 implies Theorem 2. Indeed, from the definition of

T (φ) (= coefficient of (− 1
12E2)

k in φ if φ ∈ M̃2k) it is clear that T (dφ) = −kT (φ) for φ ∈ M̃2k, so from
Theorem 3 and part (d) of the lemma we get

−k T (〈f〉q) = T
(
d〈f〉q

)
= T

(
〈Df〉q

)
= −(2k − 5)!!µ(Df) = k (2k − 3)!!µ(f)

for f ∈ R2k if Theorem 2 is true for Df , showing that Theorem 2 then also holds for f and hence is
true by induction on the weight. Finally, property (e) is needed for the compatibility of Theorem 3

with the sl2-action on M̃∗ introduced in §2. Recall that this action was defined by the three derivations
D (differentiation with respect to 2πiτ), W (multiplication by the weight) and d (differentiation with
respect to P = E2), with the commutation relations (12). The action of these derivations on q-brackets
of elements from R is given by

D
〈
f
〉
q
=
〈
Q2f

〉
q
+

P

24

〈
f
〉
q
, W

〈
f
〉
q
=
〈
E(f)

〉
q
, d

〈
f
〉
q
=
〈
D(f)

〉
q
, (37)

where E =
∑∞

m=0 mQm ∂/∂Qm is the Euler operator on R as before. The first of these formulas (also,
of course, pointed out and used in [3]) follows directly from the definition (2) of the q-bracket and the
fact that D(η) = Pη/24, the second is the homogeneity statement in the Bloch-Okounkov theorem, and
the third is equation (35). From these formulas and part (e) of Lemma 3 we get

(Dd − dD + W )
〈
f
〉
q
= D

(〈
D(f)

〉
q

)
− d

(〈
Q2f

〉
q
+

P

24

〈
f
〉
q

)
+
〈
E(f)

〉
q

=
〈
Q2D(f)

〉
q
+

P

24

〈
D(f)

〉
q
−
〈
D(Q2f)

〉
q
−

P

24

〈
D(f)

〉
q
+
〈
(E − 1

2 )f
〉
q

=
〈
Q1∂∂∂(f)

〉
q
= 0

for any f ∈ R, verifying the consistency of (37) with the sl2-commutation relations (12).

We would like to extend this idea further by defining an action of sl2 on shifted symmetric polynomials
themselves, not just on their q-brackets. The first problem is that, as the above computation shows, the
commutation relation would no longer hold with the obvious definitions, because the expression Q1∂∂∂(f)
vanishes only at the level of q-brackets, not in R itself. This can be fixed by noticing that (37) remains
true if we replace the expressions 〈Q2f〉q and 〈D(f)〉q in the first and third formulas by 〈(Q2−

1
2Q

2
1)f〉q

and 〈D(f) +Q1 ∂(∂∂∂f)/∂Q2〉q, respectively, since the q-bracket of any element of Q1 ·R is zero. Making
this replacement and repeating the above computation, we indeed find that the unwanted term Q1∂∂∂(f)

goes away. This suggests mimicking the operators D, W and d by operators D̂, Ŵ and d̂ that are
defined initially for f ∈ R by

D̂(f) =
(
Q2 −

1

2
Q2

1 +
P

24

)
f , Ŵ (f) = E(f) , d̂(f) = D(f) + Q1

∂

∂Q2
(∂∂∂f) (38)

and then extended to M̃∗ ⊗Q R = Q[P,Q,R,Q1, Q2, . . . ] by

X̂(φ f) = X(φ) f + φ X̂(f) ∀ X ∈ sl2 , f ∈ R , (39)
13



where for simplicity we write simply φ f rather than φ⊗ f for the tensor product of φ ∈ M̃∗ and f ∈ R.
This indeed works, in the sense that these new operators satisfy the commutation relations (12) (with

each X replaced by X̂), so that they define an sl2-action on the tensor product M̃∗⊗R, but it is still not
quite satisfactory because the subspace R of this tensor product is not preserved by the action, because
of the term involving P in (38). This term, of course, comes from the corresponding term in (38), i.e.,
the problem is due to the fact that the image of R is not closed under the action of sl2 on quasimodular
forms. But if we remember that the term 1

24P 〈f〉q in (38) comes from differentiating the factor η(τ)−1

in (2), then the solution becomes clear: we must not work with the q-bracket defined in (1) (sum of f
over partitions normalized by the sum of 1 over partitions), but rather with the “naive q-bracket”

〈
f
〉⋆
q

=
∑

λ∈P

f(λ) qQ2(λ) =

〈
f
〉
q

η(τ)
∈

1

η
M̃∗ (40)

(sum over partitions without any normalization). Then the τ -derivative of the q-bracket is again a

q-bracket. The price we have to pay is that this “naive q-bracket” no longer takes values in the ring M̃∗,

but in its isomorphic image η−1M̃∗, which is no longer a ring (but this is not very serious, since the
q-bracket was not a ring homomorphism anyway), and also that we have to shift the grading in R from
k to k− 1

2 in order for the new bracket map to be compatible with the grading. In other words, we can

remove the term Pf/24 from the first equation in (38) at the expense of adding a term − 1
2 f to the

second equation, and this gives sl2-actions on both R and its tensor product with M̃∗ making the new
q-bracket sl2-equivariant. We summarize this discussion as:

Theorem 6. The operators Ŵ , D̂ and d̂ defined on R by

D̂ = Q2 −
1

2
Q2

1 , Ŵ = E −
1

2
, d̂ = D + Q1

∂

∂Q2
◦ ∂∂∂ , (41)

and extended to M̃∗ ⊗Q R by (39), define actions of the Lie algebra sl2 on these two spaces, and the

modified q-bracket maps from R and M̃∗ ⊗R to η−1M̃∗ defined by f 7→
〈
f
〉⋆
q
and φ f 7→ φ

〈
f
〉⋆
q
are both

sl2-equivariant.

9. Functions having quasimodular or nearly quasimodular q-brackets. The statement of the
Bloch-Okounkov theorem, that the q-bracket of any shifted symmetric polynomial is quasimodular,
seems like such a definitive statement that one feels this should be the end of the story. In this final
section of my essay on their theorem, I would like to make clear that this is far from the case: not only
is there a considerably larger class of functions having q-brackets that are only “nearly” quasimodular
(explicitly, they are polynomials with quasimodular coefficients in the function log(q)∞, which has a
quasimodular derivative but is not quasimodular itself), but, what is perhaps even more surprising, there
are very many more functions on partitions that have quasimodular q-brackets than just the elements
of the ring Λ∗ or R.

The simplest example of such a function is given by the moment function

Sk−1(λ) =

j∑

i=1

λk−1
i (k > 0 even, λ = (λ1, . . . , λj) ∈ P ) (42)

((k − 1)st moment of the parts of λ). Indeed, writing λ as 1r12r2 · · · , where rm = rm(λ) denotes
the number of parts of λ equal to m, we have Sk−1(λ) =

∑
m≥1 rm(λ)mk−1, so

∑
|λ|=n Sk−1(λ) =

14



∑
m≥1 m

k−1Nm(n), where Nm(n) =
∑

|λ|=n rm(λ) denotes the total number of parts of size m in all

partitions of n. But the generating function of Nm(n) for fixed m ≥ 1 is clearly given by

∞∑

n=0

Nm(n) qn =
∑

r1,r2,···≥0

rm qr1+2r2+···+mrm+··· =
qm

(1− qm)2
·
∏

i 6=m

1

1− qi
, (43)

a formula that can be written more succinctly in terms of q-brackets as 〈Nm〉q = qm/(1 − qm). (This
easy calculation can be found in many places in the literature.) Multiplying by mk−1 and summing over
all m ≥ 1, we immediately obtain the formula

〈
Sk−1

〉
q
=

∞∑

m=1

mk−1
〈
rm
〉
q
=

∞∑

m=1

mk−1 qm

1 − qm
= G0

k (k ≥ 2 even) , (44)

where G0
k = Gk + Bk/2k, the kth Eisenstein series without its constant term. This equals (1 − P )/24

for k = 2 and is the sum of a modular form of weight k and a constant if k > 2. Thus the q-bracket
of Sk−1 is a non-homogeneous quasimodular form for every positive even integer k. But the functions
Sk−1 themselves are not in general in the Bloch-Okounkov ring Λ∗ (or R, which is the same as a space
of functions on P). For instance, one sees from the table given at the end of this paper that the
unique element of Λ4 having G4 (= Q/240) as its q-bracket is Q2

2 + 2Q4. The q-bracket of the function
λ 7→ S3(λ)+

1
240 is also equal to G4, but these two functions differ already on P2 : the function Q2

2+2Q4

takes on the same value 1201
240 on both partitions (1, 1) and (2) of 2, while the values of S3 +

1
240 are 481

240

and 1921
240 , which have the same sum 1201

120 (= the coefficient of q2−
1

24 in G4/η) but are not the same.

We now describe a general construction producing a large collection of functions on partitions whose
q-brackets are quasi-modular, but which in general are not in the ring R. For each n, there are well-
known identifications of the set Pn of partitions of n with both the set of conjugacy classes in the
symmetric group Sn and the set of irreducible representations of Sn. For λ and µ in Pn we denote by
χλ(Cµ) the value of the character of the irreducible representation of Sn associated to λ at any element
in the conjugacy class Cµ associated to µ. We then define for any function f : P → Q a new function
Mf : P → Q by

Mf(λ) =
1

n!

∑

µ∈Pn

|Cµ|χλ(Cµ)
2 f(µ) (λ ∈ Pn) , (45)

where |Cµ| denotes the cardinality of the conjugacy class Cµ. We call Mf the Möller transform of f .

Theorem 7. The map M : QP → QP preserves q-brackets.

Proof. The second orthogonality relation for characters says that 1
n!

∑
λ∈Pn

χλ(C)χλ(C
′) = δC,C′ |C|−1

for any two conjugacy classes C, C ′ in Sn. Applying this to C = C ′ = Cµ, multiplying by |Cµ|f(µ), and
summing, we obtain

∑
λ∈Pn

Mf(λ) =
∑

µ∈Pn
f(µ) for every f ∈ QP, so 〈Mf〉q = 〈f〉q. Note that we

can also apply the first orthogonality relation 1
n!

∑
µ∈Pn

|Cµ|χλ1
(Cµ)χλ2

(Cµ) = δλ1λ2
with λ1 = λ2 = λ

to obtain that Mf = f whenever f(λ) is a polynomial in |λ|, i.e., for all f ∈ Q[Q1, Q2] ⊂ R. �

Theorem 7 implies that 〈Mjf〉q = 〈f〉q for all j ≥ 0. For j < 0 the expression M
jf does not make

sense, since the map M is not invertible. (The matrix
( |Cµ|

n! χλ(µ)
2
)
λ,µ∈Pn

representing its action on QPn

is singular already for n = 2, where it equals 1
2

( 1 1

1 1

)
.) We can nevertheless define M

−r
R for r > 0 as

the space of functions f : P → Q for which M
rf ∈ R. Then Theorem 7 immediately gives:

Corollary. Set S =
⊕

j∈Z M
j(R) ⊆ QP. Then the q-bracket 〈f〉q is quasimodular for every f ∈ S.
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We explain briefly the genesis of the transform M and the reason for the name we have given it. The
function Mf was discovered in the special case f = Sk−1 by Martin Möller in the course of his joint
study with Dawei Chen of the Siegel-Veech constants for moduli spaces of flat surfaces. Möller and I
then studied the function Tk−1 = MSk−1 numerically and found explicit formulas for it that prove in
particular that Tk−1 belongs to the Bloch-Okounkov ring for every positive even integer k. This gives
a different proof of the quasimodularity of the q-bracket of Tk−1 than the one coming from eq. (44)
and Theorem 7. The functions Tk−1 have many further very interesting combinatorial and algebraic
properties, with quite non-trivial proofs, which will be published separately in one or several papers by
Chen, Möller and myself that are currently in preparation.

Actually, the function originally needed in the work of Chen and Möller was MS−1. Here the formula
that we found turned out to be related to an identity of Nekrasov and Okounkov (see [7] and [5]). In
our language, this identity says that for any integer m ≥ 1 the q-bracket of the function assigning to
any partition the mth elementary symmetric function of the reciprocal squares of the hook-lengths of
the cells in its Young diagram is equal to Lm/m!, where L = − log(q)∞ is the nearly quasimodular form
mentioned at the beginning of this section. More recently, I learned from Fernando Rodriguez Villegas of
a (then still conjectural) formula he had discovered generalizing the Nekrasov–Okounkov formula, giving
yet further examples of quasimodularity statements not included in the Bloch-Okounkov theorem. In
the course of further discussions with him I tried many possible common generalizations of all of these
results, but found only one that worked experimentally (i.e., led to quasimodular forms). The resulting
statement turned out, following a suggestion of Möller, to be easily deducible from a theorem that was
already in the literature. To end this section, and the paper, I will now state and prove this simple
result, including for the reader’s convenience also a self-contained proof of the earlier theorem.

We denote by a(s) and b(s) (a and b for “Arm” and “Bein”) the arm- and leg-lengths of a cell s in
the Young diagram of a partition λ, as defined in §3. It is actually more convenient to work with the
modified quantities a(s) = a(s) + 1

2 and b(s) = b(s) + 1
2 . (These are also more natural. For instance,

the set Cλ introduced in §3 is the union of the numbers a(s) and −b(s) for the diagonal cells, and the
hook-length of any cell s is simply the sum of a(s) and b(s).) For any even polynomial P (x, y) in two
variables (i.e., one satisfying P (−x,−y) = P (x, y)), we define an invariant AP on partitions by

AP (λ) =
∑

s∈Yλ

P (a(s), b(s)) (46)

(sum over the cells of the Young diagram of λ). Then we will prove:

Theorem 8. The q-bracket of AP is quasimodular for every even polynomial P .

As already stated, this result will be easy to prove using an earlier known result, discussed in detail
in a 2008 article by G.-H. Han [5] and called there the Stanley-Elder-Bessenrodt-Bacher-Manivel or
SEBBM theorem because of its somewhat complicated history as described in a paragraph of “Historical
Remarks.” (In a few words: the special case b = 0 was discovered by Stanley in 1972, was rediscovered
by Kirdar and Skyrme in 1982, by Elder in 1984, and by Hoare in 1986, and is known in the literature
as Elder’s theorem, while the general case was found by Bessenrodt [2] in 1998 and by Bacher and
Manivel [1] in 2002 and rediscovered by Han in the paper in question.) Because both the formulation
of the theorem and its proof are so spread out over the literature, we give a complete statement and
self-contained proof here. For integers a, b, n ≥ 0 denote by Na,b(n) the total number of cells with
arm-length a and leg-length b in all Young diagrams of size n. Then the SEBBM result says:

Theorem (SEBBM). The number Na,b(n) depends only on a+ b and equals Na+b+1(n).

Example: The diagram below illustrates the equality N1,1(6) = N3(6), with the Young diagrams on
the left being those of size 6 with a marked (black) cell having (gray) arms and legs of length 1, and
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those on the right corresponding to the partitions 3 + 3, 3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1 of 6 having an
(underlined, gray) part equal to 3.

Proof. We already gave the generating function of Nm in (43), so we only have to show that we get the
same answer if we replace Nm by Na,b for any a, b ≥ 0 with a+b = m−1. Write Na,b(n) =

∑
λ⊢n Na,b(λ)

with an obvious notation. Clearly each Na,b(λ) equals
∑

i,j≥1 Na,b,i,j(λ), where Na,b,i,j(λ) is defined

as 1 if the cell (i, j) belongs to the Young diagram Yλ and has arm- and leg-lengths a and b, and as 0
otherwise. From the diagram below, in which any Young diagram Yλ having a cell with the parameters

A B D

C F

E

j

b

i a

A(q) = qij

B(q) = qaj

C(q) = qib

D(q) = 1/(q)j−1

E(q) = 1/(q)i−1

F (q) = (q)a+b/(q)a(q)b

(q)n = q-Pochhammer symbol = (1− q) · · · (1− qn)

stated is partitioned canonically into three rectangular and three triangular regions A, . . . , F , so that
the total number |λ| of cells in Yλ is decomposed correspondingly into six pieces, we see that

∑

λ∈P

Na,b,i,j(λ) q
|λ| = A(q)B(q)C(q)D(q)E(q)F (q),

with the values of the power series A(q), . . . , F (q) (in which the indices a, b, i, j have been omitted from
the notation) being as given in the diagram: the formulas for the first three (partitions into exactly j
or b parts of size i or a) are obvious, those for the next two (partitions into < j parts and partitions
into parts of size < i) almost equally so, and the one for F (partitions into ≤ b parts of size ≤ a) is also
well-known and easy to derive. Now summing over i and j gives

∞∑

n=0

Na,b(n) q
n =

∑

λ∈P

Na,b(λ) q
|λ| =

(q)a+b

(q)a(q)b

∑

i, j≥1

qij+aj+ib

(q)i−1(q)j−1

=
(q)a+b

(q)b(q)∞

∑

i≥1

(q)i+a−1

(q)a(q)i−1
qib+i+a =

qa+b+1

1− qa+b+1

1

(q)∞

as desired, where for the equalities in the second line we have used the q-binomial theorem

∞∑

n=0

(q)n+k

(q)n (q)k
xn =

1

(1− x)(1− qx) · · · (1− qkx)
(in Q[[q, x]] or for |q|, |x| < 1 )

twice, first with (n, k, x) = (j − 1,∞, qi+a) and then with (n, k, x) = (i− 1, a, qb+1). �
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Proof of Theorem 8. We first observe that if P is an even polynomial, then the function

P ∗(m) =
∑

a, b≥0
a+b=m−1

P (a+ 1
2 , b+

1
2 ) (m ∈ N)

is an odd polynomial of m. (This follows, for instance, from the fact that the power series

∑

a+b=m−1

(
e(a+

1
2 )x+(b+

1
2 )y + e−(a+

1
2 )x−(b+

1
2 )y
)

=
sinhmx − sinhmy

sinh 1
2 (x− y)

is an odd function of m.) The SEBBM theorem and equation (43) then imply that

〈
AP

〉
q
= (q)∞

∑

a, b≥ 0

P (a+ 1
2 , b+

1
2 )

∞∑

n=0

Na,b(n) q
n =

∞∑

m=1

P ∗(m)
qm

1 − qm
,

which is a linear combination of functions G0
k with k > 0 even and in particular quasimodular. �

Theorem 8 gives us a large new collection of functions of partitions having quasimodular q-brackets.
Numerical calculations show that these functions are in general neither in the Bloch-Okounkov ring
nor in either its image or its inverse image under the Möller transform. Moreover, products of two or
more of the functions AP practically never have quasimodular q-brackets. These remarks together with
Theorem 7 and its corollary give substance to the statement made at the end of the introduction that
the space of functions on partitions whose q-brackets are quasimodular is much larger than the ring R,
and that it does not itself form a ring.

Appendix. Table of q-brackets up to weight 8. We give a list of 〈f〉q for all elements f of Λ∗ of
even weight ≤ 8, using Ramanujan’s notations P = E2, Q = E4, R = E6.

〈1〉q = 1

〈Q2〉q =
−P

24

〈Q2
2〉q =

−P 2 + 2Q

576

〈Q4〉q =
5P 2 + 2Q

5760

〈Q3
2〉q =

−3P 3 + 18QP − 16R

13824

〈Q2Q4〉q =
15P 3 − 6QP − 16R

138240

〈Q2
3〉q =

5P 3 − 3QP − 2R

25920

〈Q6〉q =
−35P 3 − 42QP − 16R

2903040

〈Q4
2〉q =

−15P 4 + 180QP 2 − 320RP + 156Q2

331776

〈Q2
2Q4〉q =

75P 4 − 144QP 2 − 128RP + 204Q2

3317760

〈Q2Q
2
3〉q =

25P 4 − 57QP 2 + 2RP + 30Q2

622080

〈Q2Q6〉q =
−175P 4 − 168QP 2 + 160RP + 276Q2

69672960

〈Q3Q5〉q =
−35P 4 − 21QP 2 + 26RP + 30Q2

4354560

〈Q2
4〉q =

−2625P 4 − 1260QP 2 + 1600RP + 2628Q2

232243200

〈Q8〉q =
175P 4 + 420QP 2 + 320RP + 228Q2

1393459200
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